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REDUCING THE EQUATIONS OF MOTION OF CERTAIN NON-HOLONOMIC CHAPLYGIN SYSTEMS 
TO LAGRANGIAN AND HAMILTONIAN FORM* 

N.K. MOSHCHUK 

Non-holonomic Chaplygin systems /l/ with II degrees of freedomand m(m<n) 

first integrals linear with respect to velocities, are considered. It is 

assumed that Lagrange's function is constructed taking into account the 

non-holonomic constraints imposed on the system, and the integrals are 

independent of the first m generalized coordinates. Then, provided that 

certain conditions are met, m linear non-holonomic coordinates (quasi- 

coordinates) can be introduced in such a way that the first m equations 

of motion in these coordinates will have the form of the usual Lagrange's 

equations. 

The present paper deals with the most interesting, integrable case, 
when m=n--l. It is shown that if certain conditions are met, the 

trajectories of such a system in phase space will represent quasiperiodic 

windings on the n-dimensional tori. Examples are given, namely, ofasolid 

of revolution rolling along a fixed horizontal plane, and of the motion 

of a circular disc with a sharp edge on a smooth, horizontal ice surface. 

The problem of reducing Chaplygin's equations of motion of non- 

holonomic systems to the form of the ordinary Lagranqian and Hamiltonian 

equations has been studied extensively. A detailed survey and an analysis 

of the existing approaches to solving this problem are given in /2/. 

1. Let us consider a natural, non-holonomic mechanical Chaplyqin system /l/ acted upon 

by potential forces. We assume that Lagrange's function constructed taking into account 

the non-integrable constraints imposed on the system, has the form 

L(q,q’)=T-lIn, T=‘/zq’Wq’, n=n(q) 

p = II @ij (q)ll (in i = l7 27 . . .7 n, 

(1.1) 

Here q, q’ are column matrices of the generalized coordinates and velocities of the 

system, 51 is a positive definite symmetric n X n-matrix, T and n is the kinetic and 

potential energy of the system respectively. The total energy of the system is conserved 

(T + fl =h = const), and the differential Chaplygin equations of motion 

d aL ar, 
-7 

dt 6’q - -_=r 
aq 

(4.2) 

will describe the motion of the system independently of the equations of non-integrable con- 

straints. In (1.2) I' is a column matrix of the non-holonomic terms (ri (q,q’) is the quadratic 

*Prikl.Matem.Mekhan.,51,2,223-229,1987 
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form of the velocities q'r). 
We can also write the Chaplygin equations in canonical form 

p’ = - amq + m, q’ = amp (1.3) 

where p=aLidq’ and the functions H(p, q) and @i (p,g) are obtained from the functions L (q, 

9’) and I’i(q,q’) by replacing the generalized velocities q’ by generalized moments p. 
Let aLlf3qk = 0 (k = 1, . . ., m < tz). Unlike in the holonomic systems, this does not lead 

to the first integrals of the equations of motion linear with respect to the velocities. In 
a number of problems however, the integrals can be determined /2, 3/. 

We further assume that there exist exactly m independent first integrals linear with 
respect to the velocities 

I=Aq', A=l/&(q)/I f1.Q 

Here 1 is the column matrix of the first integrals (we assume for convenience that it 
has the dimension of the generalized moments), and we assume that ahkj/aql = 0 (1 = 1, . . ., m). 

In what follows, we shall make use of the following representations of the matrices il 
and Q: 

(1.5) 

and we assume that at the points of general position detA,#O. 
Let us choose the quasicoordinates nk so that the corresponding moments are the first 

integrals of the equations of motion of the Chaplygin system in question. To do this, we 
will carry out the following substitution: 

q’,Sn’, s= 
si 0 I E 0 E (1.6) 

Here S,(q) is a non-degenerate m X m-matrix, and E is the unit matrix. From (1.6) 
we see that the last n-m quasicoordinates are identical with the initial generalized 
coordinates (we only change the notation for convenience), and in place of the first m co- 
ordinates qk we will consider the linear quasicoordinates. 

Lagrange's function will have the following form in quasicoordinates: 

and the 

L* = T* - H*, T* = ‘,&‘TY$, Y = (ST&S)* 0.7) 

equation of motion will be 

d aL* 
z3i7- - g=r*(n,n’) 

We shall denote by an asterisk the passage from the coordinates q to the quasicoordinates 
5% (or conversely, from the quasicoordinates X to the coordinates q). We note that 

(1.9) 

Thus the function L*(n,n’) does not depend explicitly on the first m quasicoordinates 
(and the last n-m coordinates are identical with the initial coordinates), i.e., n* = 

n* (n,+i, . . .,n,), S* = S* {zmflr . . ., ~6%) in 11.71. 
Wow let s, = Q;1A,r. Then, provided that the relation 

A;’ ha = Q;‘Jt~ (1.10) 

holds, we have in the first m equations of (1.8) ri* = 0. Indeed, 

From (1.11) it follows that aL*ianE*=Zr*,= const. Therefore (d/d~)(aL*/a~~‘) = 0 and taking 
into account (1.9) we conclude that rk* = 0 in (1.8). Consequently, we have the following 
theorem. 

Theorem 1. If a non-holonomic Chaplygin system with n degrees of freedom has m(m<n)’ 
independent first integrals linear with respect to velocities, such that neither these 
integrals, nor Lagrange's function constructed taking into account the non-holonomicconstraints, 
depend on the first m coordinates, then, provided that some relation (1.10) holds, the first 
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m coordinates can be replaced by the quasicoordinates in such a manner that the non-holonomic 
terms in the first m equations vanish. 

Notes. lo. Condition (1.10) is automatically satisfied if A,=O, &LO, i.e. when the 
first integrals depend only on the first m velocities ok and the expression for the kinetic 
contains no terms of the form or&q,@ == mfl,...,n). The condition is invariant under the point 
transformation of the coordinates qm+l,.-., qn- 

2O. If the matrix S, contains integrable rows, then the corresponding quasicoordinate 
is simply a generalized coordinate. 

3O. The equations of motion (1.8) can also be written in canonical form /4/ 

P. = -- afr*jan +- o*, n’ = aHyaP (1.12) 

where P = aLeian’ and H* (P,n),Q*(P,n) are obtained from the functions L*(x,x') and I'>' (n, Xi') 
as a result of replacing n' by P, with rbk* =O. 

4O. The qi may already include the quasicoordinates. It is only important that Lagrange's 
function (1.1) should not depend explicitly on them. If all conditions of Theorem 1 hold here, 
then there are no changes in the arguments used. 

50. The problem of using the quasicoordinates in non-holonomic mechanics has not been 
sufficiently explored /2/. We therefore must introduce the quasicoordinates with extreme care. 
Generally speaking, the relation between the quasicoordinates and the initial (true) co- 
ordinates can only be established for a specific trajectory of motion (which is, generally 
speaking, not known). In the problem discussed here we manage to establish this relationship 
for the case m= n--l. 

2. Let us consider the case m= n- 1 in more detail. The study of this integrable 
case leads to an analysis of a one-dimensional system (with a single local coordinate zt, = qn) 
whose energy is conserved. Theorem 1 implies at once that in (1.12) the only function which 
can be different from zero, is Qn* . We shall, however, show that we also have CD,* T= 0, i.e. 
p,; := -8Pian,. 

The Hamiltonian function in the quasicoordinates has the form 

H* = V,PT-’ (n,)P -+ II (n,) (2.1) 

Differentiating (2.1) in time we obtain 

and from this we have 

(2.3) 

When n,'+O, (2.3) yields the required relation at once. If, on the other hand, n,'=O, 
then P,' = -4H*l&x, = 0. Therefore inthiscasewe have 9b* = 0, in (1.121, i.e. the equations 
of motion have the form of the ordinary Hamiltonian equations 

P’ = -aH*lan, 3%. = ali*iap (2.4) 

Thus we reduce the investigation of the non-holonomic Chaplygin system in question to 
the study of a Hamiltonian system with n degrees of freedom and ti - 1 ignorable coordinates. 
The motion of such a system has already been studied in detail (see e.g. /5/I. 

We shall show that a smooth reversible change of the variables 4 = q (n, P)? P = p h PI 
exists and that it can be used to reduce the equations of motion of the holonomic system (1.3) 
to the form (1.4). 

First we note that (2.1) will always yield, with help of the energy integral, %' in 
terms of &PI,..., P,_l and n,,: 

n,= U(h, P,, ‘.. P,._1, n,) 

From (1.11, (1.6) and (1.7) it follows that 

p = Qq’ z (as)* n’ = [ST (n,)]-’ I? 42.5) 

Let us now find the relation connecting q with x and P. We introduce the function 

F&PI...., P=.+ n,) = S J$f- ih, G.6) 

W (n,) = [(E - S-l) fl-’ (ST)-I]* 

We note that the Last row and column in the matrix W are both zero, i.e. F, = 0 and 
WP is independent of P,. 
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The change of variables sought will have the form 

q=n + Q(P,n,) (2.7) 

where the function Q is found from F by replacing the total energy constant h by H* 0'1 4, 
i.e. Q (P, n,) 3 F iH* (P, n,), P,, . . ., PM, %I. 

Let us confirm this. Indeed, differentiating (2.7) with respect to time we obtain, by 
virtue of the equations of motion, 

q’ =L_ x’ + Q’(P, n,) z= JT’ + WPn,‘/U = n’ +- WP = 23’ + 

[(E - s-1) 0-1 ($?)-I (Sqq]* nTT’ z Jr’ i_ (s* - E) Jc* = s*n* 
(2.8) 

From (2.5)-(2.7) it follows that the change (p.q) -+ (P,s) is fairly smooth and reversible, 
and its Jacobian (equal to detS) is different from zero. 

Thus we have, at every fixed level of the first integrals, a single-valued relation 
connecting q and n, i.e. the quasicoordinates SC determine completely the position of the 
system at every level of the first integrals. 

Let us now consider the structure ofthephase space of the non-holonomic Chaplygin system 
for this case. 

If&f&s a configurational space of the initial system and Lo is its Lagrange's function, 
i.e. L,: TM,--+R (TM, is the tangential stratification of M,), then since the system is 
Chaplygin-type, there exists MC Ma (we assume that &I is a manifold) such that the mapping 
6: R-zM, can be regarded as the motion of the system in question. The mapping must satisfy, 
in the local coordinates q on M, either the Chaplygin Eqs.(1.2) with the Lagrangian L: TM-b 

R (L is Lagrange's function constructed taking into account the non-integrable constraints 
imposed on the system), or the Chaplygin Eqs.(l.3) in canonical form with the function H: 
T*M + R (T*M is the cotangential stratification of N). We find that the coordinates P,x 
can be introduced in the phase space T*&f of the non-holonomic Chaplygin system in question 
(with the local coordinates p,q) in such a manner, that the equations of motion in these 
coordinates will have the form of the ordinary Hamiltonian equations. The Hamiltonian system 
obtained in this manner has n independent first integrals in the involution, and is completely 
Liouville-integrable /5/. 

If the non-singular set of the level of first integrals is compact and connected, then 
it is diffeomorphic to the n-dimensional tsrus T” and the trajectories of motion are quasi- 
periodic windings on this torus. As in every Liouville-integrable Hamiltonian system, we can 
further introduce the action-angle variables. We note that the angle coordinates w on the 
torus and coordinates q will be connected by a relation analogous to (2.7), i.e. w =t q -/- Q’(h, 
PI, . . ., p,-1, Qn). 

If we have Asian, = 0 at some level of the first integrals, then this level will be 
"singular" and the independence of the first integrals will be violated on it. In this case 
the non-holonomic system in question may contain a stationary motion q,, = c,, qk'= ck (ci are 
certain constants) which cannot be asymptotically stable with respect to some of the variables 

161. 
Therefore the following theorem holds. 

Theorem 2. Let a natural non-holonomic Chaplygin system with n degrees of freedom have 
n- 1 first integrals linear with respect to velocities. The integrals and the Lagrange's 
function constructed taking into account the non-holonomic constraints, depend on a single 
coordinate &- Moreover, let condition (1.10) hold. We consider the set of the level of 
first integrals in Z. If all n integrals are independent of 2 and 2 is compact and connected, 

then Z N Tn and the trajectories of motion will be quasiperiodic windings on this torus. 
There exists a smooth change of the "real" canonical variables (p, q) reducing the equations 
of motion of the non-holonomic Chaplygin system in question to the ordinary Hamiltonian 
equations. 

Corollary. The non-holonomic Chaplygin systems satisfying the conditions of Theorem 2, 
have an integral invariant whose density is p = p(q,,). 

Note. If the non-holonomic Chaplygin system with two degrees of freedom admits, in 
addition to the energy integral, of another first integral, and the set I: of the non-singular 
level of thefirst integrals is compact and connected, then it follows at once that I: erT' /7/ 
(since Z is a compact, orientable two-dimensional manifold admitting a vector field without 
singularities). 

3. Let us consider a problem of a heavy convex solid of revolution rolling along a 
horizontal plane in a homogeneous gravity field /I/. The configurational space of the system 
AI,=R~xSt?(3). We choose the local coordinates on bf, as follows: 6,n are the coordinates 
of the projection of the centre of graviuy G of the body onto the horizontal plane in the 
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fixed coordinate system UEqb (the 06 axis is directed vertically upwards) and $,O,y are 
the Euler angles characterizing the orientation of the coordinate system Gsyz rigidly attached 
to the body (we direct the 5, Y,Z axes along the principal central axes of inertia of the body, 
and the z axis along axis of symmetry) relative to the fixed system. Two non-integrable con- 
straints are imposed on the system and the absolute velocity of the point of 
with the point of contact, is zero. 

In this case M= SO(O) and the Lagrangian function L constructed taking 
non-holonomic constraints, has the form (1.1) where 

9 1' = (9% 9, O)‘ n (O) = m&Z f (%), Q,T = (%, O), dt, = A i_ m (f2 + p’) 

$2, = 
Ceos%+mpX 

Ccca%+mpX I c+mp - x=fsin6-+-pcosR 

the body coinciding 

into account the 

(3.1) 

Here A,A, C are the moments of inertia of the body about the ,T,Y, 2 axes, m is the mass 
of the body, g is the acceleration due to gravity, f(6) is the height of the centre of gravity 
above the plane and p= dfld0. 

We know /l, 8/ that the equations of motion (1.2) admit in this case of two integrals, $' 
and cp', linear in velocities and depending explicitly only on 8. Thus we have in (1.4) Al= 
A, (Oh and Aa= 0. Therefore all the conditions of Theorem 2 hold and the quasiperiodic windings 
on the three-dimensional torus are the trajectories of motion in the phase space T*SO(3). 

In the case of an arbitrary function f(O) the explicit form of these integrals (i.e. the 
matrices A,) is not known, and therefore we shall carry out our investigation for the case 
when the body is bounded by a sphere of radius d > 0. Then /I/ f (O) = d-i- r cos ti (I r 1 <d) and 

From (3.2) we find that d&A, = Au(O) sinsO. Since a> 0, it follows that det A, 

sin O = 0. It can, however, be shown that this is related only to the particular 
the coordinate system used. 

We obtain the following expression for the matrix S,: 

det S1 = 
A 

anadZ>* 

(3.2) 

=O when 
character of 

(3.3) 

Thus the problem reduces to the study of a Hamiltonian system with the Hamiltonian 
function 

(3.4) 

Further investigation can be carried out just as in the case when a solid of revolution 
moves along a perfectly smooth surface. 

We note that this axis of symmetry of the body 6% can pass through the vertical position, 
provided that the relation /l/ a (O)P,- @(0)Pz= 0 or a (ra)P, - p(n) Pa = 0 holds. 

Let us point out a certain analogy between the problem of rolling a homogeneous sphere 
and the problem of geodesics on a sphere. Let A=C=(i+Jf~)rn~W2,r=O,P~=0 in (3.4) (the 
projection of the vector of angular momentum onto the vertical is equal to zero), then the 
Hamiltonian (3.4) will have exactly the same form as the Hamiltonian of the problem of motion 
of a material point of mass m(3+fC/Sj/Z over a smooth retaining sphere of radius d. 

If we write the equations of motion of the non-holonomic Chaplygin system in question in 
the form (1.3) using the real canonical variables qT = ($q, O), PT.= (p,,,,~~,pg), they will admit 
of the last Jacobi multiplier p (e) = a-l (e) and the divergence of the vector field specified 
by the right-hand side of these equations will be euqla to x=p,(cosO-- O)sin6i(a*o,,). Thus both 
the density of the integral invariant P and K are periodic along any trajectory lying on a 
non-singular level of the first integrals a, IX, I,. 

4. As the second example, we shall consider theproblemof a circular disc with a sharp 
edge moving on smooth horizontal ice /g/. The disc moves without cutting the ice, i.e. the 
velocity of the point ofthedisc which coincides with the point of contact is parallel to its 
horizontal diameter. 

Retaining the notation used in the previous example, we have f(O)= dsinO (d is the radius 
of the disc). We replace the generalized coordinates E, 4 by the quasilinear coordinates IT~.U( 

ul' = E'cosJ1 $ q'sinq,, uZ' = -c‘sin$ + n'cos J, (4.1) 
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The following constraint is imposed on the system: 

(It = deos0 (4.2) 

The non-holonomic Chaplygin system in question has four degrees of freedom. Here Jf= 

R'X SO(3) and the Lagrange's function L constructed taking into account the non-holonomic 
constraints, has the form (1.1) where 

P T = (*, rp, o,, O), ll (0) = mgd sin 8, R, = 0, R, = A + md8 

lzl = 

I 

.4sin~@+Cc0s~e CCOSI~ 0 
cease c 0 

II 0 m 

(4.3) 

We know /9/ that the problem has three integrals linear in $', cp', 01'~ i.e. Aa = 0, in 
(1.4) and 

(4.4) 

In this case the set X is not compact. All the remaining conditions of Theorem 2, 

however, hold. Therefore, there exists a change of variables which reduces the equations of 
motion of the system in question to the form of the ordinary Hamiltonian equations, and the 
trajectories of motion in the phase space T*M represent the windings of a four-dimensional 
cylinder Rt x T8 /5/. 

The author thanks A.P. Markeyev for his interest and fortheopportunity given to take 
part in a seminar. 
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